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Abstract -The accurate and reliable on-line estimation of product quality is an essential task for successful pro- 
cess operation and control. This paper proposes a new estimation method that extends the conventional linear PLS 
(Partial Least Squares) regression method to a nonlinear framework in a more robust manner. To handle the non- 
linearities, noltlinear PLS based on linear PLS and neural network has been employed. To improve the robustness 
of the noltlinear PL S, the autoassociative neural network has been integrated with nonlinear PL S. The integration 
allows us to handle the nonlinear correlation as well as nonlinear fimctional relationship with fewer components in 
a more robust manner. The application results have shown that the proposed Robust Noltlinear PLS (RNPLS) per- 
forms better than previous linear and nonlinear regression methods such as PLS, NNPLS, even for the nonline- 
arities due to operating condition changes, limited observations, and measurement noise. 
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INTRODUCTION 

The lack of on-line sensors or analyzers for measuring product 
quality variables has been a frequently encountered problem in in- 
dustries. While process variables such as temperature, pressure, 
and flow rate can be easily measured on-line, key quality vari- 
ables such as concentration in reactors and molecular weight of  
polymer are usually measured off-line. This infrequent product 
quality measurement has difficulties in controlling the processes 
to break through today's increasing pressures for production cost 
reductions and more stringent quality requirements. Recently, al- 
though great advances have been made in analytical instrumen- 
tation and sensors to provide on-line measurements, the use of new 
sensors has not yet been preferred because they still suffer from 
large measurement delays, narrow operating conditions, high in- 
veslraent/maintenance costs, low reliability and so on [Kiparissides 
and Papadopoulos, 1995]. 

For these reasons, there have been attempts to overcome the 
problems caused by the lack of on-line quality measurements. In 
these efforts, state estimation methods [Baratti et al., 1995a, b] 
and soft-sensor techniques [BaralIi et al., 1995; Medjell and Skog- 
estad, 1991a, b; Piovoso and Owens, 1991] have been proposed 
for inferring difficult-to-measure and urmleasurable quality vari- 
ables. Nevertheless, there have been very few industrial applica- 
tions and only a small number of pilot-scale experimental studies 
have been made for state estimation based on Kalman filters or 
extended Kalman filters. In applying state estimation methods to 
highly nonlinear and time varying processes, there are several tech- 
nical difficulties to be overcome. They are much dependent w o n  
the availability of a first-principle mathematical model together 
with the measurement of secondary variables with low noise cor- 
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ruption. Additional problems may be caused by the multi-rote na- 
tare of the data, obtained from sensors and analyzers. The develop- 
ment of rigorous mathematical models for estimating the product 
quality is solely dependent on state-of-the-art of mechanistic mod- 
el building. 

As an alternative to state es~timation methods, data-based empi- 
rical models, based on input-output data pair, have been propos- 
ed. These non-mechanis~rc model approaches can be used for the 
basis of soft-sensors. In these non-mechanistic models, a regres- 
sion technique is often used to infer the relationship between in- 
put and output data. Multivariate statistical data analysis methods 
such as partial least squares (PLS), principal component analysis 
(PCA), principal component regression (PCR), etc., are consider- 
ed as state-of-the-art because they can provide a general model 
for building empirical inferential models even when the input data 
has a large number of  process variables and these variables are 
highly correlated with each other. However, they also have limi- 
tations when the data has nonlinearities in nature. This is mainly 
due to the fact that they only provide linear models. Using linear 
methods in nonlinear problems can sometimes be inadequate [Palm 
and Dvmk, 1992; Xu et al., 1992]. 

Another well-known modeling method is artificial neural net- 
works. After the universal approximation property of  neural net- 
works was proven [Homik et al., 1989], numerous applications 
were made in the modeling of chemical processes [Su and Mc- 
Avoy, 1993] and also in building an inferential model [Barrati et 
al., 1995; Piovoso and Owens, 1991]. Although the direct neural 
networks approach shows much better performance than that of 
linear techniques in building an inferential model, it also has over- 
parameterization problems when the number of  observations is 
smaller than that of samples [Qin and McAvoy, 1992]. 

For these reasons, there have been efforts (NNPLS) to take ad- 
vantage of the two methods-PLS and neural networks [Orfanidis, 
1990; Holcomb and Morari, 1992; Qin and McAvoy, 1992]. In 
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practice, these efforts failed to show great improvement over stand- 
ard linear PLS for most cases and showed nearly the same per- 
formance to each other since they focused only on capturing non- 
linear functional relationships between input and output data, not 
on nonlinear correlation of the dataset. 

In this paper, we present a new method of integrating PLS and 
neural networks and apply it to estimating the product composi- 
tions of high-purity distillation columns using multiple tempera- 
ture measurements. This problem can be considered as a good ex- 
ample in that it shows how the proposed method can treat non- 
linear behavior and collinearity. This method takes the universal 
approximation property of neural networks to extend the standard 
linear PLS modeling method to a nonlinear framework. In addi- 
tion, we incorporate the stmc~re of autoassociative neural net- 
works [Krarnmer, 1992] into this nonlinear PLS so that the method 
has the properties of the nonlinear PCA (principal component an- 
alysis) capturing nonlinear correlation in the data. The Robust 
Nonlinear PLS (RNPLS) shows better performance compared to 
NNPLSs as well as standard linear PLS in view of nonlinear-map- 
ping ability, noise suppression, and capturing nonlinear correlation. 

CURRENT APPROACHES FOR BUILDING A N  
INFERENTIAL M O D E L  

Building inferential model is based on a reference (calibration) 
dataset which can be separated into two matrices; one matrix X is 
associated with the process measurements and the other matrix 
Y is associated with the quality measurements which are not gen- 
erally available in on-line. The objective is to develop an inferen- 
tial model that can predict current (or future) values of quality vari- 
ables using current measurements of the process variables. 

In this section, we briefly discuss current methodologies used 
for obtaining an inferential model lmsed on input-output data. Here 
we consider building static and dynamic inferential models. 
1. PLS (Partial Least Squares or Projection to Latent Slrue- 
ture) 

In infemng a relationship between two matrices X and Y,, Mul- 
tiple Linear Regression (MLR) method has been frequently used 
so far. However, if variables in the matrices are highly correlat- 
ed, its prediction accuracy becomes worse. On the other hand, it 
is reported that PLS, one of the multivariate statistical methods, 
can handle this problem effectively and provide good prediction 
power and robustness to process noise and sensor failure [Kresta 
et al., 1994]; therefore, it has become the main regression techni- 
que these days. Here we briefly e~rplain the key idea of PLS. For 
more detailed description, the reader should refer to Hos!mldsson 
[1988]. 

In PLS, principal components (PCs) are obtained through prin- 
cipal component analysis @CA) and then a model is found by 
least squares regression between the two blocks, which consist 
ofPCs. PLS modeling procedures are as follows. 

@ Construct two matrices X(NxM) and Y(NxK) as men- 
tioned above (Here, N is the observation number and M and K 
are the number of variables in X and Y, respectively). 

@ Apply PCA to X and Y and find outer relations [Eqs. (1) 
and (2)] of the two matrices. 
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(~) Construct two blocks that contain each I<;s and find inner 
relation [Eq. (3)] by least squares. 

X-TPr+E (1) 

Y:UCr+F (2) 

U - T B + C  (3) 

where B=(TrT) 1TTU 

Here E, F, G are residual matrices, T, U are NxA matrices, R 
C, B are MxA, KxA, AxA matrices, respectively, and A is the 
number of PLS components. The application area of PLS is ex- 
tensive in that the monitoring of chemical processes and the com- 
position estimation of distillation columns are representative ex- 
amples of successful applications in chemical engineering. How- 
ever, applying PLS to highly nonlinear problems such as high-pu- 
rity, nonideal distillation columns may sometimes be inadequate 
since it is a linear method. 
2. Artificial Neural Networks 

In 1986 when more than 40 years had passed since artificial 
neural networks were proposed, Rumelhart and McClelland pro- 
posed a backpropagation learning algorithm, and this research pro- 
vided a catalyst for much of the subsequent research in this field 
In addition, Homik et al. [1989], based on the Stone-Weiers~ass 
theorem, showed that a two-layer feed~brward network with an 
arbitrary large number of nodes in the hidden layer can approx- 
imate any continuous function to a desired accuracy. Through this 
remarkable research, neural networks have been introduced and 
applied to many fields including process system engineering, and 
have shown better results than previous methods. 

In inferential model building, a direct neural network approach 
[Barrati et al., 1995; Piovoso and Owens, 1991] is proposed for 
relating matrices Y to X by neural network as: 

Y-N(X)+E (d) 

where E is the residual matrix after regression, and N(.) stands 
for the nonlinear function of network. Although the direct network 
approach performs better than linear techniques in some cases, it 
has similar problems to the ordinary least squares method in the 
case of correlated data and limited observations compared to the 
number of variables. In this case, when neural networks are appli- 
ed for building the inferential model, they converge very slowly 
or fail to converge so that the prediction accuracy of the model be- 
comes worse [Orfanidis, 1990]. Particularly when applied to pro- 
blems with limited observation, the number of weights in a rnul- 
tiplayer network could be larger than the number of observations. 
Therefore, some of weights cannot be uniquely determined from 
the data and the direct approach leads to overfitting [Qin and Mc- 
Avoy, 1992]. 
3. Neural Networks/PLS (NNPLS) 

To supplement the drawbacks of linear PLS and neural net- 
works, many researchers have proposed new methods that can 
handle nonlinearity as well as the correlation between input and 
output data. The early ones combined PCA with neural networks 
in order to decorrelate input data through PCA for fast learning 
speed and convergence [Orfandis, 1990]. The recent ones integrate 
PLS regression and neural networks to construct a tmified model 
which can handle nonlinearity, correlated data and limited obser- 
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Fig. 1. Neural networks/PLS slructure proposed by Holeomb and 
Morari [1992]. o's and diagonals denote sigmoidal nodes 
and linear nodes, respectively. 

vations [Qin and McAvoy, 1992; Holcomb and Morari, 1992]. 
For example, Holcomb and Morari [1992] proposed a structure 
of NNPLS (Fig. 1) and its training algorithm. 

The full algorithm is: 

@ Perform PCA to decide number of directions. 
@ Initialize feature layer with PCA directions. 
@ Perform training on output layer; make no changes to fea- 

ture layer. 
@ Perform training with full networks including output layer. 
@ If performance is tmsatisfactory, add new feature nodes 

and go to step @. 

In Fig. 1, the feature layer acts as an outer relation in PLS, and the 
output layer does inner reLation. Also, neurons in the feature layer 
correspond to principal components. 

However, these nonlinear PLS methods failed to show perfor- 
mance improvement over linear PLS methods for most cases and 
showed nearly the same performance as the other. The reason is 
that they focused only on capturing nonlinear functional reLation- 
ships between input and output data, not on nonlinear correla- 
tions inthe dataset Therefore, when NNPLS, }x~sed on linear PCA, 
is applied to the highly nonlinear problems, it cannot guarantee 
good results. 

ROBUST N O N L I N E A R  PLS (RNPLS) 

1. Autoassociative Networks 
Nonlinear principal component analysis (NLPCA) is a novel 

technique for multivariate data analysis, similar to PCA. NLPCA, 
like I~A, is used to identify and remove correlations among vari- 
ables through dmlensionality reduction, visualization, and explo- 
ratory data analysis. W~le I ~ A  identifies only linear correlations, 
NLI~CA uncovers both linear and nonlinear correlations without 
any restriction on the character of the nonlinearities in the data. 
This is because NLPCA estimates a curve or hyper-plane, not a 
straight line as in PCA, passing through the middle of the obser- 
vations using least squares: 

~7 

J-~;llx,-f(s/~))ll 2 (5) 
l 1 

�9 , x m  

INPUT MAPPING BOTTLE- DEMAPPING OUTPUT 
LAYER LAYER NECK LAYER LAYER. 

LAYER 

Fig. 2. Network architecture for NLPCA using autoassociative 
networks, ff's and diagonals have same meaning as in Fig. 
1. 

where s~ does nonlinear projection to lower dimensional spaces 
and f i s  a remapping function from lower dimensional space to 
its original space. For this reason, the term, 'principal curve' is used 
instead of 'principal component'. 

Kramer [1991, 1992] showed that AAN (AutoAssociative Net- 
works) having five layers are adequate for NLPCA and propos- 
ed guidelines for determining the nLrnber of hidden nodes and se- 
lecting types of activation functions. Dong and McAvoy [1996] 
showed that NLI~CA using this AAN could capture variations of 
the data better than I ~ A  with fewer cornt~onents. In addition, when 
NLPCA is properly trained, it can be used for data preprocessing 
so that sensor-based calculations can be performed correctly even 
in the presence of large sensor noises, biases, and failures [Kramer, 
1991, 1992; Dong and McAvoy, 1996]. Due to this property, Kra- 
mer named it Robust AutoAssociative networks (RAAN). Its 
detailed structure is given in Fig. 2. In the figure, mapping layer 
estimates s~, demapping layer does f and bottleneck layer corre- 
sponds to principal components in PLS or PCA. 
2. Robust Nonlinear PLS 

As mentioned earlier, using linear methods in nonlinear pro- 
blems can sometimes be inadequate [Palus and Dvrak, 1992; Xu 
et al., 1992]. For example, ithas been shown that if I:~A is appli- 
ed to nonlinear problems, minor components do not always con- 
sist of white noise or unimportant variance, but they contain im- 
portant information [Xu et al., 1992]. If the minor components 
are kept, the PCA might contain too many components. For this 
reason, this places severe limitations on their performance. How- 
ever, NLI~CA can handle this problem with fewer components be- 
cause it estimates a curve or hyl:er-plane passing through the mid- 
die of the observations as inEq. (5), not a straight line. Therefore, 
by using the structure of AAN instead of feature layers as in pre- 
vious NNPLS like Fig. 1, it can capture nonlinear correlations and 
provide better performance with fewer components than the pre- 
vious ones. In addition, based on the ability of NLI:~A to reduce 
dimension, this new NNPLS can show better performance against 
sensor noise and sensor failure than previous ones and its robust- 
ness can be improved through training on purpose as mentioned 
earlier. For this reason, we name this new NNPLS methc~t as Ro- 
bust Nonlinear PLS (RNPLS). RNPLS's training algorithm is se- 
quential as that of Holcomb and Morari [1992] and the detailed 
algorithm is as follows: 
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Fig. 3. Proposed RNPLS' architecture. 
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@ Set the number of nodes in the bottleneck layer of ALAN 
equal to 1 and initialize weights and biases of AAN. 

@ Perform training of AAN. 
@ Perform training of RNPLS; make no changes to AAN. 
@ If performance is unsatisfactory, increase the number of 

nodes in the bottleneck layer of AAN by one and return to step 
@. 

The resulting structure of RNPLS is given in Fig. 3. Here, map- 
ping a layer of AAN corresponds to a feature layer of NNPLS 
[Holcomb and Morari, 1992] in Fig. 1. 

APPLICATION--Composit ion Estimator for 
a Distillation Column 

As mentioned in the introduction, the same problem occurs in 
composition control of distillation columns. Gas chromatography 
atffers from larger time delays of about 10 to 20 min, high invest- 
ment and maintenance cost, and low reliability. This imposes se- 
vere limitations on achieving desirable control performance. The 
most papular alternative to analyzers is to use secondary measure- 
ments which are capable of inferring product composition. The 
secondary measurements used here must be reliable, inexpensive 
and have negligible measurement delays. For this reason, Way tem- 
perature has been frequently used, and it was reported that the use 
of other secondary measurements such as feed flow does not im- 
prove the estimator performance [Mejdell and Skogestad, 1993]. 
Therefore, until the late 80's when multivariable regression techni- 
ques (PCR and PLS) began to get attention within the process con- 
trol commtmity, the number of tray temperature measurements that 
should be used had been a big issue. Although the temperature at 
the column end is an exact indicator of composition for binary dis- 
tillation columns at cons~,ant pressure, the use of a single temper- 
a~re to indicate product composition is generally not reliable for 
many reasons [Mejdell and Skogestad, 1991a]. W]-tile use of more 
tray temperature measurements can give more accurate estimate 
of composition, choosing the right trays requires considerable in- 
sight into the column responses and this method cannot be extend- 
ed to other processes. In addition, it is difficult for standard re- 
gression methods to handle a larger number of s~ongly correlat- 
ed temperature measurements. It was found that by using all avail- 
able temperature measurements, the PLS-based estimator shows 
good performance compared to other estimators such as the dyna- 

mic Kalinan filter and the static Browsilow inferential estimator 
[Mejdell and Skoges'tad, 1991a, 1993]. It was also fotmd that the 
PLS estimator can overcome nonlinearity by introducing logarith- 
mic transformations on temperatures and compositions, but be- 
comes sensitive to noise [Mejdell and Skogestad, 1991a, b]. In ad- 
dition, various scaling methods were proposed to improve perfor- 
mance and robustness of the estimator [Martens and Na~s, 1989; 
Mejdell and Skogestad, 1991a]. 

In the following sections, we will briefly present the definitions 
of the composition estimator, evaluation criteria developed to eval- 
uate estimator's performance, scaling of variables, and variable 
transformation techniques used to reduce nonlinearity. 
1. Problem Definition 

Consider the binary distillation column with constant pressure, 
and feed and reflux stream as saturated liquid. Specifying each 
value of feed composition z~ distillate composition Yo, and bot- 
tom product compasition xB yields a unique steady-state profile of 
the tray temperatures. The objective is to obtain the best estimate 
of the product compositions, Ce, using these steady-state tray tem- 
peratures, 0. The general form of the estimator may be written as 

~-K(0) (6) 

where ~ (~c:~B) r and the K(.) becomes the constant matrix for 
PLS and nonlinear function matrix for RNPLS. For binary distil- 
lation columns with n-trays, the dimension of the PLS matrix K 
is 2x(n+ 1) and the problem is to find optimal values of 2(n+ 1) 
parameters. 
2. Evaluation Criteria 

Explained Prediction Variance (EPV) [Mejdell and Skogestad, 
1991a] is often used to evaluate the performance of the estinaator: 

• MSEP(k) 
EPV(k)=100 (1-MSEP(0)) (7) 

where k is the number of principal companents (or factors), MSEP 
is the mean square error of prediction obtained from 

KSEP(k)- (y,(k)-y,): (8) 

Here, N is the number of datasets used Also, Prediction Error Sum 
of Squares (PRESS) [Kresta, 1994] is used to evaluate the absolute 
performance: 

lq ^ 2 PRESS:~(Y,-Y,) (9) 

3. Variable Transformation Techniques 
Since the composition and temperaVare profiles are nonlinear 

functions of the operating variables, many attempts have been made 
to overcome these nonlinearities. A simple and efficient way is to 
use nonlinear transformations on each variable. Logarithmic trans- 
formation of the product compositions has been proposed by sev- 
eral authors [Joseph and Brosilow, 1978; Skogestad and Morari, 
1988; Mejdell and Skogestad, 1991a] as an effective way to line- 
arize the static as well as dynamic responses. For binary mixtures 
the following transformation is used: 

where Yz2 is the distillate compasition. Various transformation tech- 
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niques were investigated by Mejdell and Skogestad [1991a] and 
they took logarithmic transformations of both the composition and 
the temperatures. The proposed transformation is 

where 0 is the tray temperature, and 0L and 0~ are reference tem- 
peratures for light and heavy components. 
4. Scaling of  Variables 

Scaling is ust~lly done to improve the estimate by giving each 
temperature a weight, corresponding to the inherent prediction 
ability. The most common approach is to scale variables to unit 
variance. The weight for the ith temperature is 

w , -  1/s~, (13) 

where G is the standard deviation of the i-th tray temperature. In 
addition, other scaling methods were presented by several atChors 
to make it more robust to noise [Martens and N~s, 1989; Mejdell 
and Skogestad, 1991a]. 
5. Example Column 

The column has 15 theoretical stages with condenser and re- 
boiler. We use a partial condenser rather than a total condenser in 
order to test the estimator's robustness according to pressure vari- 
ations since tempera~,tre is strongly affected by pressure variations. 
The feed stream enters at stage 8 as saturated liquid. A binary mix- 

Table 1. Steady-state simulation conditions 

Base case Voziations in steady- 
condition state reference set 

Inputs 
Feed flow rate 36 m3/hr 
Feed temperature 73 ~ 

Feed composition 
Methanol 50% 
Water 50% 

Outputs 
Distillate 

Methanol 99% 
Water 1% 

Bottom 
Methanol 1% 
Water 99% 

Constant 
71-75.5 ~ 

40-60% 
40-60% 

97-99.667% 
0.333-3% 

0.333-3% 
97-99.667% 

Table 2. Dynamic simulation condition 

Tray size 
Diameter 10.1 cm 
Weir height 1 cm 

Condenser vessel volume 10.1 L 
Reboiler vessel volume 8 L 
Tower volume 20 L 
Cooling volume 4.6 L 
Liquid holdup time 5 min 
Setp oint change 

Top 
Bottom 

97% ---> 99% ---> 99.6% 
3% ~ 1% ~ 0.3% 

0 

0 O 

o ~o  o o 

§ i , 

tl 

Fig. 4. Principal inner relations by PLS and NNPLS. 

ture case, one light and heavy key component, is considered. In 
order to make the problem nonlinear, we consider a high-purity 
distillation column. Steady state and dynamic simulations have 
been performed using a rigorous process simulator, HYSYS TM. 

The steady-state and dynamic simulation conditions are given in 
Tables 1 and 2. In distillation columns, nonlinearity is primarily 
due to the nonlinear behavior of Vapor-Liquid-Equilibrium. Fig. 
4 also shows the nonlinear relationship, that is, the nonlinear prin- 
cipal inner relation between the score values ul and tl. As shown 
in Fig. 4, although the linear PLS method provides a goed model 
when the data are correlated and limited, it has difficulty in treat- 
ing the nonlinearity underlying the data. To overcome the weak- 
ness of the linear PLS method, various nonlinear PLS methods 
have been proposed and considered as alternative methods. 

S IMULATION RESULTS 

1. Model Building from Reference Data 
Using HYSYS TM and Table 1 as simulation conditions, we ob- 

tained 64 reference datasets. The reference datasets consist of 64 
different simulation runs. The y~ outputs x~ and the feed composi- 
tion zr were specified, and the corresponding steady-state tem- 
perature proNes were obtained by using HYSYS TM. The data were 
uniformly spread around y~ x~, and z~, From the data, we built 
four different models-PLS without transformation (PLS), PLS 
with transformation (PLS W/TRNS), NNPLS, and RNPLS. For 
all cases, mean centering and unit variance scaling [Eq. (13)] of 
data were done. 

In transformation for PLS W/TRNS, we take logarithmic trans- 
formation of both the composition and the temperatures [Eqs. 
(10) and (11)] using condenser temperature and boiling point of 
water as reference temperatures in Eq. (11). NNPLS model is 
based on Holcomb and Morari's method. In order to test NNPLS 
and RNPLS under the same conditions, we made the structure of 
the output layer of NNPLS and RNPLS the same as 2 layer net- 
works with the same number of nodes (5-2). In building NNPLS 
and RNPLS, training was continued until there was no further pro- 
gress in reducing network output error. In addition, training was 
repeated with different random initial values of weights and biases 

March, 2000 



RNPLS for Composition Estimation in Distillation Column 189 

to increase the probability of finding the global crpfimum. For more 
efficiently training the network, the Levenberg-Marquardt algo- 
rithm [Scales, 1985], a variation of Newton's method, is used. 

Before determining the model dimension (neural network slruc- 
ture) of RNPLS, we must first select the number of mapping and 
demapping nodes of autoassociative networks. Since our training 
algorithm of RNPLS focused only on bottJeneck nodes, the num- 
ber of bottleneck nodes which correspond to overall model dimen- 
sion of RNPLS cannot be determined before mapping and demap- 
ping layers' sizes are determined. In fact, because the number of 
nodes in each layer cannot be selected independently, it is a very 
difficult task to determine networks' structure simultaneously. 
Kramer [1991, 1992] propased the guideline for determining the 
structure of  autoassociative networks as follows: 

M~+M2<<m(n f)/(m+f+l)  (14) 

f<<(m,n); m<M1,M2 (15) 

where M~ and M~ are the number of nodes in mapping and de- 
mapping layers, respectively, and f is the number of nodes in the 
bottleneck layer. In our example, the number of variables in X(m) 
is 16 and the number of observations (n) is 64, andwe set f equal 
to one. So, 16<M~, M2 and M~+M2<<56. To prevent over-para- 
meterization, we use final prediction error (FPE) and Akaike's in- 
formation theoretic criterion (AIC) that express trade-offs between 
fitting accuracy and the number of adjustable parameters in the 
model [Ljurg 1987; Soderstrom and Stoica, 1989]. Minimization 
of these criteria identifies models that are neither over-parame- 
terized nor under-parameterized. We tested different numbers of 
mapping layers in these experiments, but for simplicity we set M~ 
andM2 equal. Table 3 shows the number of mapping nodes, error, 
and the model selection criteria of FPE and AIC for each model. 
These results show that 19 mapping nodes are required to achieve 
the desired performance. We fixed the number of mapping and 
demapping nodes as 19 in determining the model dimension of 
RNPLS later. 

The number of PLS dimensions for good prediction is usually 
determined by cross-validation [Wbld, 1978]. We also used this 
method in determining the dimension of NNPLS and RNPLS. In 
cross-validation, the reference data set is partitioned into several 
subsets (uslaally 4-7 subsets). Using all subsets excluding one of 
these subsets, a new model with another PLS dimension is deter- 
mined. This model is used to predict the Y values in the remain- 
ing subset, and the PRESS for this subset is calculated. This pro- 
cedure is repeated until each data subset has been excluded once 

Table 3. Determinat ion of  number  of  mapping  nod es of  autoas-  
sociative networks  

and only once; then, the PRESS values for each subset are summ- 
ed to obtain the overall PRESS. If this overall PRESS value shows 
a benefit in adding an additional PLS dimension to the model, then 
the entire data set is used to recalculate the final values of the latent 
variables. The optimal model order correspands to a minimum in 
the overall PRESS. Equivalently, Percentage ofexplc~ned variance 
can be used instead and it is calculated as follows. 

SSTO PRESS Percentage explained variance SSTO (16) 

where SSTO is the total sum of squared error calculated from 

N 

SSTO-Y,(Y, Y) (17) 

and y is mean value of y. Comparing Eqs. (7) with (16), one can 
see that the two equations are the same since 7~,(0) is equal to y. 
In this case, when the maximum value of EPV(or Percentage of 
explained variance) is reached, the model order is considered as 
optimal. In practice, this value increases continuously as the model 
dimension increases. However, the optimal model dimension can 
easily be found since the increment in EPVvalue decreases dras- 
tically after the optimal dimension. For each modeling method, 
the results of the model determination procedure using EPV or 
Percentage explained variance are summarized in Tables 4, 5, 
6, and 7, and the optimal model dimension is represented by bold- 
face in the tables. For detailed procedure and calculations of cross- 

Table 4. Cross-validation informal ion used to determine model  
d imens ion (PLS)  

Model dimension 
(no. of PCs) 

Percentage variance explained or EPV 

X u 

1 66.3 42.3 
2 90.3 89.4 
3 99.2 97.5 
4 99.8 99.7 

5 99.9 99.9 

Table 5. Cross-validation information used to determine model  
d imens ion (PLS W / T R N S )  

Model dimension Percentage variance explained or EPV 

(no. of PCs) X Y 

1 64.4 42.1 
2 89.1 91.0 
3 99.9 99.8 

4 100.0 100.0 

Table 6. Cross-val idal ion information used to determine model  
d imens ion (NNPLS)  

No. of mapping Error E FPE AIC 
nodes of AAN 

17 867.14 1.770 0.371 
18 756.29 1.736 0.304 
19 565.29 1.475 0.0834 

20 528.81 1.585 0.0860 
21 499.62 1.747 0.0992 
22 468.31 1.951 0.105 

Model dimension Percentage variance explained or EPV 

(no. of feature units) X Y 

1 63.8 90.2 
2 94.1 96.1 
3 98.4 100.0 
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Table 7. Cross-validation information used to determine model 
dimension (RNPLS) 

Model dimension Percentage variance explained or EPV 

(no. of bottleneck nodes) X Y 

1 64.9 66.3 
2 99.8 100.0 

Table 8. Comparison of model dimension 

Model Percentage variance explained or EPV 
Model 

dimension X Y 

PLS 4 99.8 99.7 
PLS W/TRNS 3 99.9 99.8 
NNPLS 3 98.4 100.0 
RNPLS 2 99.8 100.0 

validation, refer to Wold [ 1978]. 
As model building results, PLS and PLS W/TRNS have 4 and 

3 principal components, respectively, and network s~uctures for 
NNPLS and RN~LS are (16-3-5-2) and (16-19-2-5-2). To com- 
pare both models' dimension and their prediction power, the best 
model for each method is summarized in Table 8. From the table, 
RNPLS is the best since it can explain the process variance nearly 
perfectly with remarkably fewer principal components (model di- 
mension) than others, and from which it can be known that dimen- 
sional reduction ability of RNPLS is the best among the models 
as mentioned earlier. 
2. Prediction with New Data 

To test static and dynamic performance of the models, we ob- 
tained test datasets-another 32 sets of steady-state data and setpoint 
change data-from Tables 1 and 2. For both cases (static and dyna- 
mic), we prepared noisy data which contain three different noise 
levels (• ~ i0.2 0Q i0.3 %) to show robustness of models. 
To produce these noisy data, we added randomly distributed noise 
with magnitude of 0.1, 0.2, and 0.3 to tray temperatures. Also, in 
order to test estimators' own robustness to noise, we did not train 

NNPLS and RN~LS to these noisy data. 
2-1. Static Performance 

The static performance of  models is summarized in Tables 9 
and 10. For top composition estimation (Table 9), PLS shows the 
worst performance, while NNPLS and RNPLS show the best 
performance for both cases when there is no noise in the data. 
However, as the noise level increases, the performance ofPLS W/ 
TRNS becomes worse than that of PLS. These same results have 
already been reported [Mejdell and Skogestad, 1991a]. However, 
it should be noted that the robustness of PLS is worse than that 
ofPLS W/TRNS in bottom composition estimation. This means 
that bottom composition estimation is less affected by noise add- 
ed to tray temperatures. Therefore, estimation Fefformance of bot- 
tom composition by logarithmic transformation is not much de- 
teriorated because bottom composition is less correlated to tray 
temperatures than top composition is. To investigate this, degree 
of correlation of  compositions to tray temperatures is shown in 
Figs. 5 and 6. Comparing the two figures clearly shows that top 
composition is much more correlated than bottom composition, 
and this holds for estimation in multi-component distillation col- 
umns. Also, as noise level increases, NNrPLS shows same trends 
as PLS in its performance for both cases where RNPLS maintains 
the best performance. The reason is that because NNPLS uses line- 

D 2  r . . . . . . . . . . . . . . . . . . . . .  ] 

r~ 

L) 
.~ 
~ -o.4- 

! 
0 6 .  

. . . . . .  i i ~ , , ~ i j i 4 . - ,  i ~ . -  
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Fig. 5. Cumulative contribution of tray temperatures to bottom 
composition (From PLS model coefficients). 

Table 9. Static performance of estimators to steady-state test data (Top composition) 

PRESS EPV 

PLS PLS W/TRNS NNPLS RNPLS PLS PLS W/TRNS NNPLS RNPLS 

No noise 7.70e-6 2.07e-6 9.97e-8 1.05e-7 99.7 99.9 100.0 100.0 
0.1 noise 3.56e-5 5.41e-5 2.61e-5 9.49e-7 98.7 98.1 99.1 100.0 
0.2 noise 1.18e-4 2.05e-4 1.10e-4 5.87e-6 95.8 92.7 96.1 99.8 
0.3 noise 1.87e-4 5.04e-4 1.70e-4 9.68e-6 93.3 82.0 93.9 99.7 

Table 10. Static performance of estimators to steady-state test data (Bottom composition) 

PRESS EPV 

PLS PLS W/TRNS NNPLS RNPLS PLS PLS W/TRNS NNPLS RNPLS 

No noise 1.00e-5 2.08e-5 1.74e-8 1.83e-8 99.6 99.3 100.0 100.0 
0.1 noise 1.12e-5 2.72e-5 2.37e-6 1.20e-7 99.6 99.0 99.9 100.0 
0.2 noise 4.91e-5 4.56e-5 1.10e-5 5.41e-7 98.2 98.4 99.6 100.0 
0.3 noise 7.04e-5 3.32e-5 2.03e-5 1.18e-6 97.5 98.8 99.3 99.9 
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Fig. 6. Cumulative contribution of tl~y temperatures to top com- 
position (From PLS model coefficients). 

actions and pressure variations during seDoint change induce 
small temperature variations in dynamic data, and these varia- 
tions act as a noise so that the performance ofPLS W/TRNS is 
worse than that of PLS. As in the static case, the robustness of  
PLS W/TRNS is better than that of PLS in bottom composition 
estimation, and NNPLS shows the same robustness as that of  
PLS. Also, the prediction power and robustness of  RNPLS ex- 
ceed all other methods for the top and bottom composition esti- 
mations. This means that RNPLS captures nonlinear correlation 
well, which cannot be captured by other methods due to its small 
variances. Although this nonlinear correlation is minor, it has im- 
portant information about system dynamics. 

CONCLUSIONS 

ar PCA, its noise cancellation ability is the same as that of PLS and 
is inferior to RNPLS using NLPCA. Inthe view of prediction po- 
wer and robustness, RNPLS shows the best results for estimating 
the top and bottom compositions. 
2-2. Dynamic Case 

For most cases, the dynamic performance of the estimator is 
more important than static performance because an inferential 
model is frequently used for control purposes. Therefore, in addi- 
tion to good static performance, good dynamic performance is es- 
sential for inferential models. Dynamic performances according to 
set-point changes are shown in Figs. 7 and 8. On the contrary to 
static case, PLS W/TRNS shows worse performance than that of 
PLS for noise-free data. This can be explained as that controller 
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n,- 
a_ 0 0 0 2 -  
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PLS V'#TRNS 
NNPLS 
RNPLS 

In this work, we propased a new method that extends linear PLS 
to nonlinear frameworks based on neural networks. In addition 
to its nonlinear mapping ability, the proposed RNPLS provides 
a more parsimonious model than other nonlinear PLS methods 
because RNPLS based on NLPCA can capture nonlinear corre- 
lations with fewer components. For composition estimation in 
high-purity binary distillation columns, RNPL S shows good pre- 
diction power and robustness in both static and dynamic cases 
under the existence of measurement noise. Especially when used 
for control, RNPLS can guarantee good control performance since 
it shows excellent performance for dynamic cases compared to 
others. Also, it should be noted that the characteristics of  corn- 
position estimation at the top and bottom are different; therefore, 
these characteristics must be considered when one designs an esti- 
mator using conventional PLS methods. 
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Fig. 7. Dynamic performance of estimators to setpoint change 
data (Top composition). 
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Fig. 8. Dynamic performance of estimators to setpoint change 
data (Bottom composition). 

A 
B 
C 
E , F , G  
f 
J 
K 
K 
L 
M 
N 
N 
n 
P 
s~ 
T 
T 
U 
X 

:number of  PLS components 
: least square solution, B (TrT) ~TrU 
: matrix consisting of loading vector of Y 
: residual matrices 
: vector of smooth functions mapping from ~ to 
:objective fimction to minimize in NLPCA 
: number of  variables (columns) in Y 
: inferential model mapping from X to Y 
: transformed tempemVare 
: number of  variables (columns) in X 
: number of  observations (number of rows in X or Y) 
: nonlinear mapping found by neural networks 
: number of  trays 
: matrix consisting of loading vector of X 
: vector of smooth functions mapping from S~Mto S~ A 
: matrix consisting of score vector of X 
: temperature 
: matrix consisting of score vector of Y 
: process measurements matrix 
: i-th row of X 
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xB 
Y 
v~ 

Y, 
Y~ 
zp 

:bottom composition 
: quality measurements matrix 
: transformed composition 
: predicted y by model 
: i-th row of Y 
: distillate (top) composition 
: feed composition 

Greek Letters 
0 : secondary variables (here, tray temperature) 

: sigmoid activation function 

Superscript 
b : boiling point 

Subscripts 
B :bottom product 
D :distillate 
F :feed 
f : vector of  functions, f 
H : heavy key component 
i : observation index (1 ..... N) 
L : light key component 
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